
A Short Guide to ggplot2

Political Science Y575
Indiana University

Last Compiled: February 29, 2016
Last Updated: January 9, 2015

Christopher D. DeSante, Ph.D.∗

Contents

1 Why this guide? 3

2 Introduction to ggplot2: 3

2.1 The Basic Grammar of Graphics: . 3

2.2 A Very Basic Plot: . 4

3 The Most Commonly Used Geoms: 5

geom point() . 5

geom line() . 5

geom jitter() . 5

geom bar() . 6

geom abline() . 6

geom pointrange() . 6

geom boxplot() . 7

geom density() . 7

geom errorbar() . 7

geom text() . 8

geom tile() . 8

4 Other Useful Functions 9

4.1 Casting and Melting with reshape2 . 9

Example 1: Means of Variables over Time . 10

Example 2: Casting/Melting with two variables: . 11

∗Christopher DeSante is currently an Assistant Professor of Political Science at Indiana University in Bloomington, Indiana. He
received his Ph.D. in Political Science (American Politics and Methodology) in 2012 from Duke University in Durham, NC. He can be
reached via email at cdesante@indiana.edu. Most of the examples here can be found on the is.R Tumblr page, which also contains a
number of fantastic examples by David B. Sparks, a fellow Duke Ph.D. and currently of the Boston Celtics. In fact, the first version
of this guide was written in 2010, mostly as a way to keep all of my code to do certain things in one place so as to not pester David
with so many questions.

http://www.jstatsoft.org/v21/i12/paper
www.iub.edu
www.duke.edu
mailto:cdesante@indiana.edu
http://is-r.tumblr.com

Example 3: Adding facets() . 12

4.2 ggsave() . 17

4.3 grid.arrange() . 22

5 Color in ggplot2: 23

5.1 Custom Colors in ggplot2: . 23

scale color manual: . 23

scale colour gradientn . 24

scale colour brewer . 25

6 Manipulating Text in ggplot2: 26

6.1 Using Mathematical Expressions in Labels . 26

6.2 plotmath in ggplot2 . 27

6.3 Custom Axis Breaks using + scale y continuous() . 28

6.4 Textual Healing . 29

6.5 Working with hjust(), vjust() and angle() . 31

7 The Legend(s) of ggplot2 32

7.1 Troubleshooting Legends . 32

7.2 ggplot() vs. qplot() . 35

8 Mapping Spatial Data 36

8.1 Basic State-Level Map . 36

8.2 Projections . 38

8.3 Pulling Maps from the Web with qmap() . 39

8.4 Maps at the County Level using FIPS Codes . 41

2

1 Why this guide?

Plots are important and statistical graphics can convey a lot of information. On the other hand, plots can also
be used to mislead readers or the masses to support whichever conclusion the statistician wishes (??). In your
graduate training, details matter; the little things you think are not important (tables, graphics, presentation style,
document style, etc.) all have marginal effects on conference presentations, paper publication and (ultimately)
tenure.

The wise graduate student would look at the guide below as an nice, compact set of tools that can help them
advance their research toward publication. The student who says something like, “why do I need to use R; why
can’t I make my charts in Excel or Stata or SPSS?” my reply is this: you don’t need to do this, but a failure
to do so serves as an indicator for the kind of standard to which you hold yourself. If your job is to write and
publish professional papers, and someone gives you both the means and opportunity to make your papers appear
more professional, then you should probably have the motivation to follow through with this process (or choose a
different profession).

This monograph is solely to be used as an abbreviated guide to a single graphics package; I have compiled
it because I was tired of having to look up all the code I’d used previously to solve a particular problem. Of
course, there are other and better guides available both online – http://docs.ggplot2.org/current/ – and in print
(?); also, since Hadley Wickham sometimes updates the ggplot2 package, there’s a non-zero chance none of this
code works.

2 Introduction to ggplot2:

This guide uses the newer version of ggplot2, version 1.0 and the examples are run on R version R version 3.1.1
(2014-07-10) – “Sock it to Me”. In the R console, it can be installed using:

install.packages("ggplot2", dependencies=TRUE)

library(ggplot2)

#the next line will remove the grey backgrounds

#and set the theme to black and white:

theme_set(theme_bw())

2.1 The Basic Grammar of Graphics:

All plots that you make using ggplot will utilize the following elements:

data – the data.frame you’ll want to visualize;

geometry – the shapes you want to see in the plot;

stat – how you transform the data (counts, means, ranges, etc.) before you visualize it;

scale/aes – legends/axes/colors/sizes/shapes, these are the aspects that make it possible to “read” data values
from the graphic;

coordinates – Cartesian (X/Y) or others (polar coordinates or mapping projections;

facets – subsetting the original data.frame in a way that makes it easier to present multiple dimensions or plots;

3

http://docs.ggplot2.org/current/

2.2 A Very Basic Plot:

To begin our plotting, let’s make a very simple set of data and plot two variables against each other. One could
think of this as simply plotting the equation Y = X2 − 12X + 6 over (0,10). This is shown in figure 1 using the
basic plot() command in base R.

X <- 0:10

Y <- (X^2 - 12*X + 6)

plot(X,Y)

Figure 1: Y = X2 − 12X + 6 over (0,10)

0 2 4 6 8 10

-3
0

-2
0

-1
0

0
5

X

Y

Below, the code to the left of the figure produces a data.frame consisting of one variable that is a function of
the other (a sequence from 0 to 10 by 1). The ggplot command specifies the data.frame to look for the data in,
and the “geom point” command tells ggplot2 to plot a series of points corresponding to the X and Y variables
specified in the aes(thetics) portion of the command. Point is only one of many geoms (geometric objects) that
one sees on the plot. Here are some examples of some others, though a full list can be seen at Hadley Wickham’s
ggplot2 website.

#This code produces figure 1:

Var.1 <- 0:10

Var.2 <- (Var.1^2 - 12*Var.1 + 6)

my.data <- data.frame(Var.1, Var.2)

my.data

#This line produces our first plot:

ggplot(data = my.data) + geom_point(aes(

x = Var.1, y = Var.2))

Figure 2: Y = X2 − 12X + 6 over (0,10)

●

●

●

●

●

●
●

●

●

●

●

−30

−20

−10

0

0.0 2.5 5.0 7.5 10.0
Var.1

V
ar

.2

4

http://docs.ggplot2.org/current/

3 The Most Commonly Used Geoms:

geom point()

#This code produced figures 2 and 3:

Var.1 <- 0:10

Var.2 <- (Var.1^2 - 12*Var.1 + 6)

ggplot(data = my.data)+ geom_point(aes(x = Var.1, y = Var.2))

#Options for geom_line:

x, y, alpha, colour, linetype, size.

Figure 3: geom point()

●

●

●

●

●

●
●

●

●

●

●

−30

−20

−10

0

0.0 2.5 5.0 7.5 10.0
Var.1

V
ar

.2

geom line()

#This code produces figure 4:

Var.1 <- 0:10

Var.2 <- (Var.1^2 - 12*Var.1 + 6)

ggplot(data = my.data) + geom_line(aes(x = Var.1, y = Var.2))

#Options for geom_line:

#x, y, alpha, colour, linetype, size.

Figure 4: geom line()

−30

−20

−10

0

0.0 2.5 5.0 7.5 10.0
Var.1

V
ar

.2

geom jitter()

#This code produces figure 5:

#Notice the overplotting...

Var.1 <- sample(1:6, 500, replace = T)

Var.2 <- sample(1:4, 500, replace = T)

my.data <- data.frame(Var.1, Var.2)

ggplot(data = my.data) + geom_point(aes(x = Var.1,

y = Var.2))

#This code produces figure 6:

#Notice how ‘jitter’ corrects overplotting...

Var.1 <- sample(1:6, 500, replace = T)

Var.2 <- sample(1:4, 500, replace = T)

my.data <- data.frame(Var.1, Var.2)

ggplot(data = my.data) + geom_jitter(aes(x = Var.1,

y = Var.2))

Figure 5: Points without geom jitter()

●●

●●

●●●

●

●

●

●

●

●●●

●

●

●●

●

●

● ●

●

●

● ●

●

●●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●●

●●

● ● ●●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●● ●

●●

●●

● ● ●

● ●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●●

●

●●

●

●

●

●●

●

● ●

●

●

●

●

●

● ● ●● ●

●

● ●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●● ●

●

●

●● ●

●●●

●

●

●●

●

●● ●

●

●●

●

●

●

●●

●

●

●●

●

●●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

● ●

●●

●

●

●

●

●

●● ●●

●●

●

● ●

● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●●

●●

● ●●●

●

●

●●

●

● ●

●●

●

●●

●

●●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

● ●

●

●

●

●

●

●

●●

●●

●

●

●

●● ●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

1

2

3

4

2 4 6
Var.1

V
ar

.2

Figure 6: Points with geom jitter()

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

2

3

4

2 4 6
Var.1

V
ar

.2

5

geom bar()

#This code produced figure 7:

Var.3 <- sample(c(1:100), 300, replace=T)

bar.data <- data.frame(Var.3)

ggplot(data = bar.data) + geom_bar(aes(x = Var.3),

stat = "bin", binwidth=1)

#Options for geom_bar:

#x, y, alpha, colour, fill, linetype, size, weight.

Figure 7: geom bar()

0.0

2.5

5.0

7.5

0 25 50 75 100
Var.3

co
un

t

geom abline()

#This code produced figure 8:

Var.3 <- sample(c(1:100), 300, replace=T)

Var.4 <- rnorm(300)

lm(Var.3 ~ Var.4)

#Intercept: 50.275, Slope = -1.31

abline.data <- data.frame(Var.3, Var.4)

AB <- ggplot(data = abline.data) + geom_point(aes(

x = Var.4 , y = Var.3)) + geom_abline(

intercept = 50.275, slope = -1.31)

#Options: alpha, colour, linetype, size

Figure 8: geom abline()

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

0

25

50

75

100

−3 −2 −1 0 1 2 3
Var.4

V
ar

.3

geom pointrange()

#This code produces figure 9:

LOWS <- 0:4

Var.Y <- 1:5

HIGHS <- 2:6

Var.X <- c(10, 20, 30, 40, 50)

pointrange.data <- data.frame(LOWS, HIGHS,

Var.Y, Var.X)

ggplot(data = pointrange.data

) + geom_pointrange(aes(x = Var.X, y = Var.Y,

ymin = LOWS, ymax = HIGHS))

x, y, ymin, ymax, alpha, colour,

linetype, shape, size, fill

Figure 9: geom pointrange()

●

●

●

●

●

0

2

4

6

10 20 30 40 50
Var.X

V
ar

.Y

6

geom boxplot()

#This code produced figure 10:

Var.11 <- sample(1:300, 1000, replace=T)

Var.Cat <- sample (c("group 1", "group 2",

"group 3"), 1000, replace=T)

my.data <- data.frame(Var.11, Var.Cat)

ggplot(data = my.data) + geom_boxplot(aes(

x = Var.Cat , y = Var.11))

#lower ,middle ,upper, x, ymax,

#ymin, alpha, colour, fill, linetype,

#shape, size, weight

Figure 10: geom boxplot()

0

100

200

300

group 1 group 2 group 3
Var.Cat

V
ar

.1
1

geom density()

#This code produced figure 11:

Var.Den <- rnorm(10000, mean = 4, sd = 2)

Den.data <- data.frame(Var.Den)

ggplot(data = Den.data) + geom_density(

aes(x = Var.Den), stat="density")

#Aesthetics: x, y, alpha, colour,

#fill, linetype, size, weight

Figure 11: geom density()

0.00

0.05

0.10

0.15

0.20

0 5 10
Var.Den

de
ns

ity

geom errorbar()

#This code produced figure 12:

LOWS <- 0:4

Var.Y <- 1:5

HIGHS <- 2:6

Var.X <- c(10, 20, 30, 40, 50)

errorbar.data <- data.frame(LOWS, HIGHS,

Var.Y, Var.X)

ggplot(data = errorbar.data

) + geom_errorbar(aes(x = Var.X, y = Var.Y,

ymin = LOWS, ymax = HIGHS))

#Aesthetics: x, ymax, ymin, alpha,

colour, linetype, size, width,

Figure 12: geom errorbar()

0

2

4

6

10 20 30 40 50
Var.X

V
ar

.Y

7

geom text()

#This code produced figure 12:

X <- rep(1:5, 5)

Y <- rep(5:1, each=5)

Labels <- LETTERS[-25]

qplot(x = X, y = Y, geom = "text",

label = Labels, xlab ="", ylab="",

main = "Consonants or Vowels in the Alphabet \n")

Figure 13: geom text()

A B C D E

F G H I J

K L M N O

P Q R S T

U V W X Z1

2

3

4

5

1 2 3 4 5

Consonants or Vowels in the Alphabet

As we’ve seen, the plots above are all very basic and lack the use of ggplot2’s many other options; our final
example was made by David Sparks and is an example of a heatmap; it uses the reshape package discussed in the
next section. Conceptually, a heatmap shows the correlation matrix between some set of variables. As David notes,
it features the lovely diverging “spectral” palette from Colorbrewer; reorders two factor variables (displayed along
the axes), and brings in custom colors. This was originally posted to the is.R Tumblr by David on 9/27/2012.

geom tile()

library(reshape2)

library(RColorBrewer)

nRow <- 9

nCol <- 16

myData <- matrix(rnorm(nRow * nCol), ncol = nCol)

rownames(myData) <- letters[1:nRow]

colnames(myData) <- LETTERS[1:nCol]

Replace with numbers that actually have a relationship:

for(ii in 2:ncol(myData)){

myData[, ii] <- myData[, ii-1] + rnorm(nrow(myData)) }

for(ii in 2:nrow(myData)){

myData[ii,] <- myData[ii-1,] + rnorm(ncol(myData)) }

For melt() to work seamlessly, myData has to be a matrix.

longData <- melt(myData)

head(longData, 20)

Optionally, reorder both the row and column variables in any order

Here, they are sorted by mean value

longData$Var1 <- factor(longData$Var1,

names(sort(with(longData, by(value, Var1, mean)))))

longData$Var2 <- factor(longData$Var2,

names(sort(with(longData, by(value, Var2, mean)))))

Define palette

myPalette <- colorRampPalette(rev(brewer.pal(11, "Spectral")), space="Lab")

zp1 <- ggplot(longData,

aes(x = Var2, y = Var1, fill = value))

zp1 <- zp1 + geom_tile()

zp1 <- zp1 + scale_fill_gradientn(colours = myPalette(100))

zp1 <- zp1 theme_bw()

print(zp1)

Figure 14: geom tile() “Heatmap”

b
d
a
c
e
f
g
i
h

I B H P F J G M L N E C D A O K
Var2

V
ar
1

-4

-2

0

2

4
value

8

http://is-r.tumblr.com/post/32387034930/simplest-possible-heatmap-with-ggplot2

4 Other Useful Functions

4.1 Casting and Melting with reshape2

The fundamentals for the package we will use, reshape2, are explained in detail by ?.

ANES <- read.csv("http://pages.iu.edu/~cdesante/ANES.csv")

head(ANES)

ANES$caseid <- 1:dim(ANES)[1]

head(ANES)

dim(ANES)

The output is shown below in figure 15:

Figure 15: Output

Now we can see we have 18 different variables loaded: year, age, cohort, female, race6, religion, dems, ftwelfare,
ftpoor, ftaliens, ftyoung, pid7, trust, ideo7, inerrant, south, dempres, and caseid. Loading relevant packages
(ggplot2, reshape2 and gridExtra), we can then take a look at what the melt() function does through the reshape
package. Melting essentially reshapes the data into a new data.frame based on whichever variables you specify
in the id=“” option; this should be dictated by which variables you wish to analyze. If we are only interested in
time trends in the ANES, we can just melt by year:

library(ggplot2)

library(gridExtra)

library(reshape)

anes.year <- melt(ANES, id=c("year"), na.rm=TRUE)

head(anes.year)

The output is shown below in figure 16:

Figure 16: Output

anes.year has dimensions (619169 x 3). The dimensions are such that for every N variables (with complete
cases) in the ID option, you return a data.frame that has N+2 columns and rows equal to the number of rows in
the original data times the number of variables. This is a very useful way to transform data. If, for example, we
want to see differences by year by gender, we can melt by year and ‘female.’

anes.year.gender <- melt(ANES, id=c("year", "female"), na.rm=TRUE)

head(anes.year.gender)

dim(anes.year.gender)

9

http://www.jstatsoft.org/v21/i12/paper

So, step one is to melt according to variables you plan on using; the next step is to CAST the data in such a
way that extracts useful quantities that you can then use to plot/display/summarize.

Example 1: Means of Variables over Time

For simplicity’s sake, let’s truncate the data.frame so that it only includes measures of partisanship and ideology
as well as the year of the survey. This is done in three steps; the first of which is optional but may help keep your
R workspace organized.

1. Subsetting the data to only include our variables of interest;
2. MELT the data using year as the identifying (id) variable (figure 17 shows the resulting output);
3. CAST this data so that we can get the means over time (figure 18).

#Step 1 : Subset

party.and.ideology<- ANES[,c(1, 12, 14)]

head(party.and.ideology)

#Step 2 : Melt

party.and.ideology.year <- melt(party.and.ideology,

id=c("year"), na.rm=TRUE)

head(party.and.ideology.year)

#Step 3 : Cast using dcast()

party.and.ideology.means.over.time <- dcast(

party.and.ideology.year,

year~variable, mean, na.rm=T)

party.and.ideology.means.over.time

head(party.and.ideology.means.over.time)

Figure 17: Output after sub-setting and melt()

Figure 18: Final Casted Output

Now we can plot a relatively complex computation very easily, which figure 19 shows.

P1 <- ggplot(data = party.and.ideology.means.over.time

) + geom_point(aes(x = year, y = pid7))

P1 + ylim(0,6) + labs(

title="Partisanship over Time (ANES)")

● ●
●

●
● ●

●

● ● ●
● ● ●

● ● ●

●
●

●

●
●

●

● ● ●

● ●

●

0

2

4

6

1950 1960 1970 1980 1990 2000 2010
year

pi
d7

Partisanship over Time (ANES)

Figure 19: Quick plot after melt() and dcast()

10

Example 2: Casting/Melting with two variables:

Imagine instead we want to look at how Partisanship has shifted over these years between the South/Non-south.
If we begin with just our ANES data frame, this might seem like quite a daunting task. However, if we know how
to melt/cast appropriately, it is easier... First step, again, is to restrict our data to only the columns we want to
utilize in our analysis. This isn’t necessary, but let’s keep things as simple as possible for now.

ANES <- read.csv("http://pages.iu.edu/~cdesante/ANES.csv")

party.and.region <- ANES[,c(1, 12, 16)]

head(party.and.region)

#Note the additional changes to our id=():

#I use complete.cases() to remove the NA values.

party.and.region.year <- melt(party.and.region[complete.cases(party.and.region),],

id=c("year", "south"), na.rm=TRUE)

head(party.and.region.year)

#Note the additional changes to our formula (below):

party.region.time <- dcast(party.and.region.year, year+south~variable, mean, na.rm=TRUE)

party.region.time

head(party.region.time)

Figure 20: head(party.region.time)

#Note the additional changes to our formula (below):

party.region.time <- (cast(party.and.region.year, year+south~variable, mean, na.rm=T))

party.region.time

dim(party.region.time)

P2 <- ggplot(data = party.region.time) + geom_point(aes(x = year,

y = pid7, colour=as.factor(south)))

P2 <- P2 + ylim(0,6) + labs(title="Partisanship over Time by Region")

Below, figure 21 shows the output:

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●
● ●

● ●

●
●●

●
●

0

2

4

6

1950 1960 1970 1980 1990 2000 2010
year

pi
d7

as.factor(south)

●

●

0

1

Partisanship over Time by Region

Figure 21: Plot after melting and casting by two variables

11

Example 3: Adding facets()

While a few other examples can be found on the is-r blog, the next logical step is to add one more variable to
the mix and change the display using facets. To stick with our previous examples, what if we wanted to look at
the change in partisanship over time by both sex and region? Now we have four variables of interest: year, pid7,
female and south.

party.gender.region <- ANES[,c(1, 4, 12, 16)]

head(party.gender.region)

#Note the additional changes to our id=():

party.gender.region.year <- melt(party.gender.region, id=c("year", "female", "south"), na.rm=TRUE)

head(party.gender.region.year)

#Note the additional changes to our formula (below):

party.gender.region.time <- dcast(party.gender.region.year, year+female+south~variable, mean, na.rm=T)

#given some NAs for gender, I’m just going to clean these up quickly

party.gender.region.time <- party.gender.region.time[complete.cases(party.gender.region.time),]

head(party.gender.region.time)

#What party.gender.region.time represents is a matrix with four means per year,

based on gender and region. So, for each year there’s one for men in the south,

men in the non-south, as well as women in each of the two regions.

#Throwing this into ggplot gives us a nice way to choose how to display this information.

Below, figure 22 shows the resulting melted casted, and cleaned data:

Figure 22: head(party.gender.region.time)

P3 <- qplot(data = party.gender.region.time, geom = "line",

x = year, y = pid7, color = factor(female))

1.0

1.5

2.0

2.5

3.0

1950 1960 1970 1980 1990 2000 2010
year

pi
d7

factor(female)

0

1

Figure 23: P3 – What’s wrong with this?

12

http://is-r.tumblr.com/post/34556058683/ggtutorial-day-1-using-reshape

Figure 23 suffers from “over plotting;” the data are shown as zig-zags because for each year and sex there are
two points being coerced into making a line. There are several ways of cleaning this up.

Option 1: We could use geom point() and add an aesthetic like shape

P3b <- qplot(data = party.gender.region.time,

geom = "point",

x = year, y = pid7,

shape = factor(south),

color = factor(female))

Figure 24: P3b

●

● ●

●

●●

●
●

●

●

●●
●

●

●

● ●●

●
●

●

●
●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

1.0

1.5

2.0

2.5

3.0

1950 1960 1970 1980 1990 2000 2010
year

pi
d7

factor(female)

●

●

0

1

factor(south)

● 0

1

Option 2: We could use custom colors

#NOTE: I’ve truncated party.gender.region.time

party.gender.region.time$COL <- c()

p...time$COL[party.gender.region.time$female==0 &

party.gender.region.time$south==0] <- 1

p...time$COL[party.gender.region.time$female==0 &

party.gender.region.time$south==1] <- 2

p...time$COL[party.gender.region.time$female==1 &

party.gender.region.time$south==0] <- 3

p...time$COL[party.gender.region.time$female==1 &

party.gender.region.time$south==1] <- 4

P3c <- qplot(data = party.gender.region.time,

geom = "line",

x = year, y = pid7,

color = factor(COL))

Figure 25: P3c

1.0

1.5

2.0

2.5

3.0

1950 1960 1970 1980 1990 2000 2010
year

pi
d7

factor(COL)

1

2

3

4

Option 3: Change the linetype

#NOTE: I’ve truncated party.gender.region.time

party.gender.region.time$LTY <- c()

p...time$LTY[party.gender.region.time$female==0 &

party.gender.region.time$south==0] <- 1

p...time$LTY[party.gender.region.time$female==0 &

party.gender.region.time$south==1] <- 2

p...time$LTY[party.gender.region.time$female==1 &

party.gender.region.time$south==0] <- 3

p...time$LTY[party.gender.region.time$female==1 &

party.gender.region.time$south==1] <- 4

P3c <- qplot(data = party.gender.region.time,

geom = "line", x = year, y = pid7,

linetype = factor(LTY))

Figure 26: P3d

1.0

1.5

2.0

2.5

3.0

1950 1960 1970 1980 1990 2000 2010
year

pi
d7

factor(LTY)

1

2

3

4

13

Solution: add facets()

Facets allow us to make different panels within a single plot, illustrating our desired effects while maintaining both
clarity and appropriate legends/labels. Oftentimes it doesn’t require any new variables to be created. The output,
which makes two panels on the basis of region facets = ∼south), is shown below in figure 27.

P3x <- qplot(data = party.gender.region.time,

geom = "line", x = year,

y = pid7, color = factor(female) ,

facets = ~south)

Figure 27: facets = ∼south
0 1

1.0

1.5

2.0

2.5

3.0

1950 1960 1970 1980 1990 2000 20101950 1960 1970 1980 1990 2000 2010
year

pi
d7

factor(female)

0

1

Alternatively, we could facet based on sex, and change the linetype to indicate region (figure 28).

P3y <- qplot(data = party.gender.region.time,

geom = "line", x = year, y = pid7,

linetype = factor(south) ,

facets = ~female)

Figure 28: facets = ∼female
0 1

1.0

1.5

2.0

2.5

3.0

1950 1960 1970 1980 1990 2000 20101950 1960 1970 1980 1990 2000 2010
year

pi
d7

factor(south)

0

1

For now, let’s ignore the things that could be fixed in figures 27 and 28 (axis text, legend labels, etc.). Instead,
let’s look at how faceting can help us illustrate patterns in very large sets of data. In our ANES data, we have
data from 1948 up through 2008. Beginning in 1972, we asked respondents for both their ideological leaning and
partisanship. Looking just at those folks we could classify as Democrats and Republicans, we could check whether
the parties are becoming more moderate or more polarized in the 35 years of data we have. Using the revalue()

function from the plyr() package, we can recode the 7 point party identification variable into 0 or 1.

POST72$twoparty <- revalue(factor(POST72$pid7),

c("0"="1", "1"="1",

"2"="1", "3" = NA,

"4"="0", "5"="0", "6"="0"))

qplot(data = POST72[complete.cases(POST72) ,] ,

x = ideo7 , facets = twoparty ~ year,

fill = factor(twoparty), geom= "density",

stat = "density", position = "identity")

14

1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2008

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

1
0

0 2 4 60 2 4 60 2 4 60 2 4 60 2 4 60 2 4 60 2 4 60 2 4 60 2 4 60 2 4 60 2 4 60 2 4 60 2 4 60 2 4 60 2 4 60 2 4 60 2 4 60 2 4 6
ideo7

de
ns

ity

factor(twoparty)

1

0

Figure 29: facets = twoparty ∼ year

Notice here we can facet by two variables using a formula (rows ∼ columns); the two different figures are shown
above in figure 29 and below in figure 30; both of which could be made more aesthetically pleasing.

qplot(data = POST72[complete.cases(POST72) ,] ,

x = ideo7 , facets = year ~ twoparty,

fill = factor(twoparty), geom= "density",

stat = "density", position = "identity")

1 0

0.000.250.500.75

0.000.250.500.75

0.000.250.500.75

0.000.250.500.75

0.000.250.500.75

0.000.250.500.75

0.000.250.500.75

0.000.250.500.75

0.000.250.500.75

0.000.250.500.75

0.000.250.500.75

0.000.250.500.75

0.000.250.500.75

0.000.250.500.75

0.000.250.500.75

0.000.250.500.75

0.000.250.500.75

0.000.250.500.75

197219741976197819801982198419861988199019921994199619982000200220042008

0 2 4 6 0 2 4 6
ideo7

de
ns

ity

factor(twoparty)

1

0

Figure 30: facets = year ∼ twoparty

15

#NOTE: I’ve only added an option called "adjust"

qplot(data = POST72[complete.cases(POST72) ,] ,

x = ideo7 , facets = year ~ twoparty,

fill = factor(twoparty), geom= "density",

stat = "density", position = "identity",

adjust=1.5)

Changing this option allows us to see a smoother
transition from year to year; though the axes labels
are still quite hard to read.

Figure 31: adjust = 1.5
1 0

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

1972
1974

1976
1978

1980
1982

1984
1986

1988
1990

1992
1994

1996
1998

2000
2002

2004
2008

0 2 4 6 0 2 4 6
ideo7

de
ns

ity

factor(twoparty)

1

0

#NOTE: Alpha and Adjust have changed:

qplot(data = POST72[complete.cases(POST72) ,] ,

x = ideo7 , facets = ~year ,

fill = factor(twoparty),

geom= "density", alpha = I(0.25),

stat = "density", position = "identity",

adjust=1.25)

Changing the alpha level and just faceting by year,
figure 32 is much easier to read, I think. Recall:
this is the same data as above. I present it larger
in figure 33, below.

Figure 32: alpha = I(0.25)
1972 1974 1976 1978 1980

1982 1984 1986 1988 1990

1992 1994 1996 1998 2000

2002 2004 2008

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0 2 4 6 0 2 4 6 0 2 4 6
ideo7

de
ns

ity

factor(twoparty)

1

0

1972 1974 1976 1978 1980

1982 1984 1986 1988 1990

1992 1994 1996 1998 2000

2002 2004 2008

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0 2 4 6 0 2 4 6 0 2 4 6
ideo7

de
ns

ity

factor(twoparty)

1

0

Figure 33: facets = ∼ year

16

4.2 ggsave()

Given the trouble you might have reading important parts of the plots above, now is a good time to talk about how
to export plots from R. The ggsave() command is a nice way to automatically save the last plot you produced to
the working directory, using the following syntax. If you don’t know where your working directory is, use getwd().
To set the working directory, use setwd().

ggsave(filename = default_name(plot), plot = last_plot(),

device = default_device(filename), path = NULL,

scale = 1, width = par("din")[1],

height = par("din")[2], units = c("in", "cm", "mm"),

dpi = 300, ...)

Here’s an example, which saves a 6x4 inch PDF version of the plot (aPlot) in figure 33 in my working directory,
and names it “myplot.”

aPlot <- qplot(data = POST72[complete.cases(POST72) ,] ,

x = ideo7 , facets = ~year ,

fill = factor(twoparty),

geom= "density", alpha = I(0.25),

stat = "density", position = "identity",

adjust=1.25)

ggsave("myplot.pdf", aPlot,

width=6, height=4, units="in")

1972 1974 1976 1978 1980

1982 1984 1986 1988 1990

1992 1994 1996 1998 2000

2002 2004 2008

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0 2 4 6 0 2 4 6 0 2 4 6
ideo7

de
ns

ity

factor(twoparty)

1

0

Figure 34: facets = ∼ year

17

Another way to do this is to, for example, adjust the plot to the dimensions you want inside R or RStudio and
then use the scale() option in ggsave() to make it larger or smaller.

ggsave("myplot1.pdf", aPlot, scale = 1)

1972 1974 1976 1978 1980

1982 1984 1986 1988 1990

1992 1994 1996 1998 2000

2002 2004 2008

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0 2 4 6 0 2 4 6 0 2 4 6
ideo7

de
ns

ity

factor(twoparty)

1

0

Figure 35: ggsave("myplot1.pdf", aPlot, scale = 1)

ggsave("myplot12.pdf", aPlot, scale = 0.50)

1972 1974 1976 1978 1980

1982 1984 1986 1988 1990

1992 1994 1996 1998 2000

2002 2004 2008

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0 2 4 6 0 2 4 6 0 2 4 6
ideo7

de
ns

ity

factor(twoparty)

1

0

Figure 36: ggsave("myplot12.pdf", aPlot, scale = 0.50)

ggsave("myplot122.pdf", aPlot, scale = 0.250)

19721974197619781980

19821984198619881990

19921994199619982000

200220042008

0.00.20.40.6

0.00.20.40.6

0.00.20.40.6

0.00.20.40.6
024602460246

ideo7

de
ns

ity

factor(twoparty)

1

0

Figure 37: ggsave("myplot12.pdf", aPlot, scale = 0.250)

18

Balancing the Scales

Because you have two scaling commands at your disposal; one in ggplot2 and the other in LATEX, your figures
should always be legible and neat; all crappy graphics in this work only serve to illustrate how to do certain things,
not polish all figures. Below, I show you some various options to play with the different scaling parameters using
the same graphic as above, which is saved as a 8.06” x 4.11” image in R.

ggsave("myplotA.pdf", aPlot, scale = 1) #ggplot2 scale option

\begin{figure}

\includegraphics[scale=1]{myplotA.pdf} % TeX scale option

\end{figure}

Figure 38: SCALES: ggplot2= 1, TEX= 1

1972 1974 1976 1978 1980

1982 1984 1986 1988 1990

1992 1994 1996 1998 2000

2002 2004 2008

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0 2 4 6 0 2 4 6 0 2 4 6
ideo7

de
ns

ity

factor(twoparty)

1

0

Figure 39: SCALES: ggplot2= 0.5, TEX= 1

1972 1974 1976 1978 1980

1982 1984 1986 1988 1990

1992 1994 1996 1998 2000

2002 2004 2008

0.00.20.40.6

0.00.20.40.6

0.00.20.40.6

0.00.20.40.6

024602460246
ideo7

de
ns

ity

factor(twoparty)

1

0

19

Figure 40: SCALES: ggplot2= 0.75, TEX= 0.75

1972 1974 1976 1978 1980

1982 1984 1986 1988 1990

1992 1994 1996 1998 2000

2002 2004 2008

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0 2 4 6 0 2 4 6 0 2 4 6
ideo7

de
ns

ity

factor(twoparty)

1

0

Figure 41: SCALES: ggplot2= 1, TEX= 0.5

1972 1974 1976 1978 1980

1982 1984 1986 1988 1990

1992 1994 1996 1998 2000

2002 2004 2008

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0 2 4 6 0 2 4 6 0 2 4 6
ideo7

de
ns

ity

factor(twoparty)

1

0

Figure 42: SCALES: ggplot2= 1, TEX= 0.75

1972 1974 1976 1978 1980

1982 1984 1986 1988 1990

1992 1994 1996 1998 2000

2002 2004 2008

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0 2 4 6 0 2 4 6 0 2 4 6
ideo7

de
ns

ity

factor(twoparty)

1

0

Figure 39 was terrible; figures 43 and 44 (next page) look pretty good, though!

20

Figure 43: SCALES: ggplot2= 1.25, TEX= 0.75

1972 1974 1976 1978 1980

1982 1984 1986 1988 1990

1992 1994 1996 1998 2000

2002 2004 2008

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0 2 4 6 0 2 4 6 0 2 4 6
ideo7

de
ns

ity

factor(twoparty)

1

0

Figure 44: SCALES: ggplot2= 2 , TEX= 0.5

1972 1974 1976 1978 1980

1982 1984 1986 1988 1990

1992 1994 1996 1998 2000

2002 2004 2008

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0 2 4 6 0 2 4 6 0 2 4 6
ideo7

de
ns

ity

factor(twoparty)

1

0

21

4.3 grid.arrange()

Using the grid.arrange() function from the gridExtra package along with ggplot2 is an easy way to combine
multiple graphical objects into a single graphic. In ggplot2 you can simply assign a plot to an object name, as
shown below, and then call the grid.arrange() command to print each of the plots in a grid whose dimensions you
specify.

library(ggplot2)

library(gridExtra)

Var.1 <- 0:10

Var.2 <- (Var.1^2 - 12*Var.1 + 6)

PlotA <- ggplot(data = my.data) + geom_point(aes(x = Var.1, y = Var.2))

PlotB <- ggplot(data = my.data) + geom_line(aes(x = Var.1, y = Var.2))

Var.3 <- sample(c(1:100), 300, replace=T)

bar.data <- data.frame(Var.3)

PlotC <- ggplot(data = bar.data) + geom_bar(aes(x = Var.3),

stat = "bin", binwidth=1)

LOWS <- 0:4

Var.Y <- 1:5

HIGHS <- 2:6

Var.X <- c(10, 20, 30, 40, 50)

pointrange.data <- data.frame(LOWS, HIGHS,

Var.Y, Var.X)

PlotD <- ggplot(data = pointrange.data

) + geom_pointrange(aes(x = Var.X, y = Var.Y,

ymin = LOWS, ymax = HIGHS))

grid.arrange(PlotA, PlotB, PlotC, PlotD, ncol=2)

Figure 45 shows the resulting output:

−30

−20

−10

0

0.0 2.5 5.0 7.5 10.0
Var.1

V
ar

.2

−30

−20

−10

0

0.0 2.5 5.0 7.5 10.0
Var.1

V
ar

.2

0.0

2.5

5.0

7.5

0 25 50 75 100
Var.3

co
un

t

0

2

4

6

10 20 30 40 50
Var.X

V
ar

.Y

Figure 45: using grid.arrange()

22

5 Color in ggplot2:

So, where does ggplot2get its colors? If you’ve ever asked ggplot2 to color on the basis of a factor, you might
have been surprised by the default color choices. The fact is, ggplot colors factors on the basis of finding evenly
spaced colors around the HCL space.

One Colour Two Colours

Three Colours Four Colours

Five Colours Six Colours

Seven Colours Eight Colours

Figure 46: Colors in ggplot2 (script is available here)

5.1 Custom Colors in ggplot2:

scale color manual:

So far we’ve covered Melting and Casting data using the reshape() package and today were going to look at
different ways of coloring and selecting palettes for plots. For these plots, were going to use the built in diamonds
dataset that comes packaged in ggplot2. Below, I go through loading the data and selecting four different palettes
to color a plot from the diamonds data set using the scale color manual() option in ggplot.

library(ggplot2)

library(gridExtra)

data(diamonds)

diamonds <- diamonds[diamonds$color < "J",]

#Script for Figure 19

#Random Colors

my.colors <- sample(colors(), 7)

RANDOM <- ggplot(data = diamonds) + geom_point(aes(x = carat, y = price, color=factor(color))

) + facet_wrap(~color) + scale_color_manual(values = my.colors) + labs(title = "+ scale_color_manual(values=sample(colors(), 7)\n")

custom.colors.1 <- c("red", "orange" , "yellow", "green", "blue", "blueviolet", "violet")

C1 <- ggplot(data = diamonds) + geom_point(aes(x = carat, y = price, color=factor(color))

) + facet_wrap(~color) + scale_color_manual(values = custom.colors.1) + labs(title = "+ scale_color_manual(values=custom.colors.1)\n")

custom.colors.2 <- c("skyblue1", "skyblue2" , "skyblue3", "steelblue", "springgreen2", "springgreen3", "springgreen4")

C2 <- ggplot(data = diamonds) + geom_point(aes(x = carat, y = price, color=factor(color))

) + facet_wrap(~color) + scale_color_manual(values = custom.colors.2

) + labs(title = " + scale_color_manual(values = custom.colors.2) \n")

#Rainbow Colors

ROYGBIV <- rainbow(6)

RAINBOW <- ggplot(data = diamonds) + geom_point(aes(x = carat, y = price, color=factor(color))

) + facet_wrap(~color) + scale_color_manual(values = ROYGBIV) + labs(title = " + scale_color_manual(values = rainbow(6)) \n")

grid.arrange(RANDOM, C1, C2, RAINBOW, ncol=2)

23

http://hclwizard.org/why-hcl/
https://gist.github.com/3941162

Figure 47 shows the resulting output:

Figure 47: using grid.arrange() along with custom colors

scale colour gradientn

If you have a continuous dependent variable, youll want to use a gradient option that gently transitions between
two specified colors. Some examples are below:

data(diamonds)

diamonds <- diamonds[diamonds$color < "J",]

G5 <- ggplot(data = diamonds) + geom_point(aes(x = carat,

y = price, color=price)) + facet_wrap(~color)

G6 <- G5 + scale_colour_gradientn(colours=rainbow(2))

G7 <- G5 + scale_colour_gradientn(colours=c("red", "blue"))

G8 <- G5 + scale_colour_gradientn(colours=c("white", "dodgerblue"))

grid.arrange(G5, G6, G7, G8, ncol=2)

Figure 48 shows the resulting output:

D E F

G H I

0
5000

10000
15000

0
5000

10000
15000

1 2 3 4 1 2 3 4 1 2 3 4
carat

pr
ic

e

5000

10000

15000

price
D E F

G H I

0
5000

10000
15000

0
5000

10000
15000

1 2 3 4 1 2 3 4 1 2 3 4
carat

pr
ic

e

5000

10000

15000

price

D E F

G H I

0
5000

10000
15000

0
5000

10000
15000

1 2 3 4 1 2 3 4 1 2 3 4
carat

pr
ic

e

5000

10000

15000

price
D E F

G H I

0
5000

10000
15000

0
5000

10000
15000

1 2 3 4 1 2 3 4 1 2 3 4
carat

pr
ic

e

5000

10000

15000

price

Figure 48: using grid.arrange() along with custom colors

24

scale colour brewer

If you want to choose colors for factors or discrete variables, you might want to use a Brewer color scale
(http://colorbrewer2.org/):

#Script for Figure 21

library(ggplot2)

library(gridExtra)

data(diamonds)

diamonds <- diamonds[diamonds$color < "J",]

B1 <- ggplot(data = diamonds) + geom_point(aes(x = carat, y = price, color=color)

) + facet_wrap(~color) + scale_colour_brewer(palette="Set1") + labs(title = "Palette=’’Set1’’\n")

B2 <- ggplot(data = diamonds) + geom_point(aes(x = carat, y = price, color=color)

) + facet_wrap(~color) + scale_colour_brewer(palette="Set2") + labs(title = "Palette=’’Set2’’\n")

B3 <- ggplot(data = diamonds) + geom_point(aes(x = carat, y = price, color=color)

) + facet_wrap(~color) + scale_colour_brewer(palette="Blues") + labs(title = "Palette=’’Blues’’\n")

B4 <- ggplot(data = diamonds) + geom_point(aes(x = carat, y = price, color=color)

) + facet_wrap(~color) + scale_colour_brewer(palette="Reds") + labs(title = "Palette=’’Reds’’\n")

grid.arrange(B1, B2, B3, B4, ncol=2)

Figure 49 shows the resulting output:

Figure 49: using grid.arrange() along with Brewer colors

25

http://colorbrewer2.org/

6 Manipulating Text in ggplot2:

6.1 Using Mathematical Expressions in Labels

This section relies on using the function bquote(), which from its help file is “an analogue of the LISP back-
quote macro. bquote quotes its argument except that terms wrapped in .() are evaluated in the specified where
environment.” Since I’m sure that’s less than perfectly clear, I’ll attempt to illustrate it with an example.

X <- seq(-2*pi, 2*pi, by = pi/16)

Sin.X <- sin(X)

P1 <- qplot(X, Sin.X, geom = "line", ylab = "Sin(X)",

main = "Sin(X) on -2pi, 2pi ",

colour = I("red"), size = I(1))

P1

Figure 50: Sin(X) on −2π, 2π

-1.0

-0.5

0.0

0.5

1.0

-4 0 4
X

S
in

(X
)

Sin(X) on -2pi, 2pi

Using the bquote() command, we can improve upon figure 50 by changing the “pi” to π in the plot’s title.
Here, we use quotes to contain any regular text and asterisks (*) to delimit/separate the elements; bquote() knows
to make the necessary changes to print common (mathematical) symbols. This improvement results in figure 51.

title.text <- bquote("Sin of X on the interval (-2" *

pi * ", 2" * pi* ")")

P2 <- qplot(X, Sin.X, geom = "line", ylab = "Sin(X)",

main = title.text ,

colour = I("red"), size = I(1))

P2

Figure 51: with an improved title

-1.0

-0.5

0.0

0.5

1.0

-4 0 4
X

S
in

(X
)

Sin of X on the interval (-2p, 2p)

If, however, we have only mathematical symbols that we want to print, we can concatenate those symbols in
a regular vector and use expression() to translate them accordingly; this is shown in figure 52.

P3 <- P2 + scale_x_continuous(breaks = seq(-2*pi,

2*pi, by=pi), labels = c(expression(-2*pi) ,

expression(-pi) , 0, expression(pi),

expression(2*pi)))

P3

Figure 52:

-1.0

-0.5

0.0

0.5

1.0

- 2p - p 0 p 2p
X

S
in

(X
)

Sin of X on the interval (-2p, 2p)

26

6.2 plotmath in ggplot2

Below are just a few of the symbols that we can print in R graphics. For a more comprehensive list, run ?plotmath

or visit this website: http://astrostatistics.psu.edu/su07/R/html/grDevices/html/plotmath.html

?plotmath

X <- rep(1:5, 5)

Y <- rep(1:5, each=5)

cbind(X, Y)

Greek <- c(

expression(alpha) , expression(beta) , expression(gamma) , expression(delta) ,

expression(epsilon) , expression(Alpha) , expression(Beta) , expression(Gamma) ,

expression(Delta) , expression(Epsilon) , expression(integral(f(x)*dx, a, b)) ,

expression(hat(x)) , expression(widehat(xy)) , expression(x %=>% y) ,

expression(union(A[i], i==1, n)) , expression(intersect(A[i], i==1, n)) ,

expression(lim(f(x), x %->% 0)) , expression(frac(x, y)) ,

expression(infinity) , expression(partialdiff) ,

expression(x %down% y) , expression(phi1) , expression(sigma1) ,

expression(theta1) , expression(omega1))

Plot <- ggplot()

Plot + geom_text(aes(x = X, y = Y, geom = "text",

label = paste(Greek)), parse=TRUE, size = I(7))

Figure 53: Go Nuts!

a b g d e

A B G D E

ó
õa
b
f(x)dx x̂ xy xÞy È

i=1

n
Ai

Ç
i=1

n
Ai lim

x®0
f(x) x

y ¥ ¶

x ¯ y j V J v

1

2

3

4

5

1 2 3 4 5
X

Y

27

http://astrostatistics.psu.edu/su07/R/html/grDevices/html/plotmath.html

6.3 Custom Axis Breaks using + scale y continuous()

These examples are available online here, but for each of the text manipulations we will do we will begin with a base
plot object referred to as Plot.1. Plot.1 uses some data that were invented in order to illustrate manipulating
text in ggplot2. The real data is available as the ToothGrowth dataset in R.

text.plots <- data.frame(

SUPP = c (rep(c("Control", "Vitamin C", "Orange Juice"), each = 1500)) ,

DOSE = rep(rep(c("I", "II", "III"), each=500), 3),

LENGTH = c(rnorm(500, 4, 2),

rnorm(500, 7, 1.2),

rnorm(500, 8, 1.4),

rnorm(500, 7, 1),

rnorm(500, 8, 4),

rnorm(500, 10, 2),

rnorm(500, 8, 2.7),

rnorm(500, 7, 1.8),

rnorm(500, 6, 1.9)), stringsAsFactors = FALSE)

Plot.0 <- ggplot(text.plots, aes(x = SUPP, y = LENGTH , fill = SUPP)) +

geom_boxplot(alpha = 0.6, outlier.colour = c("grey40") , outlier.size=3.5

) + scale_fill_manual(values=c("cadetblue", "orange", "orangered3")) +

facet_wrap(~DOSE) + theme_bw() +labs(title="Tooth Growth in Guinea Pigs \n",

x="\n Treatment", y="Change in Length (mm) \n") + guides(fill = guide_legend("\n Supplement")

) +geom_hline(y=0, lty=2)

Plot.0

Plot.1 <- Plot.0 + scale_y_continuous(breaks=seq(-4, 24, by=4))

Plot.1

Below, figure 54 shows our base plot, Plot.1, which we will manipulate as an object.

●

●

●

●
●
●●

●●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●●

●
●●●

●

●

●●

●

●

I II III

−4

0

4

8

12

16

20

Control Orange Juice Vitamin C Control Orange Juice Vitamin C Control Orange Juice Vitamin C

 Treatment

C
ha

ng
e

in
 L

en
gt

h
(m

m
)

 Supplement

Control

Orange Juice

Vitamin C

Tooth Growth in Guinea Pigs

Figure 54: Plot.1

28

http://is-r.tumblr.com/post/35699866752/textual-healing

6.4 Textual Healing

To Adjust X Axis Label Size/Face/Color:

Plot.1 + theme(axis.title.x = element_text(face="bold",

colour="dodgerblue",

size=14))

Figure 55: + theme(axis.title.x ...

To Adjust Y Axis Label Size/Face/Color:

Plot.1 + theme(axis.title.y =

element_text(face="italic",

colour="darkred",

size=24))

Figure 56: + theme(axis.title.y ...

When adjusting multiple parameters, you can use specify both within the “theme” command:

Plot.1 + theme(axis.title.x =

element_text(face="bold",

colour="dodgerblue",

size=14) ,

axis.title.y =

element_text(face="italic",

colour="darkred",

size=24))

Figure 57: + multiple changes

29

Changing Main Title Text/Face/Color:

Plot.1 + theme(plot.title =

element_text(family="sans",

face="bold",

colour="darkblue",

size=44))

Figure 58: + theme(plot.title ...

Another option in the element text() is angle, which is useful in certain occasions; especially when you have
tight axis tick labels, like below in figure 59.

Plot.1 + theme(axis.text.x =

element_text(colour="black",

size = 12,

face = "plain"))

Figure 59:

By adjusting the angle at which the tick text is displayed, this problem can be solved. This is shown in
figure 60; changes can be made to other labels mutatis mutandis1.

Plot.1 + theme(axis.text.x =

element_text(colour="black",

size = 11,

face = "bold.italic",

angle=45,

vjust=1,

hjust=1))

Figure 60:

1“Changing those things which need to be changed;” to instead alter the y-axis text, you would change axis.text.x to axis.text.y.

30

6.5 Working with hjust(), vjust() and angle()

When you’re working with text and things aren’t lining up as beautifully as you’d like, there are some options to
adjust where the text label begins/ends in relation to the point it is labeling. Figure 61 shows one such example;
here I’ve plotted how fun I thought a Nintendo game was against how difficult it was; for the record, I never got
beyond the second level on Top Gun; that game is possibly my least favorite thing ever.

Difficulty <- c(5, 10, 90, 100)

Fun <- c(30, 90, 50, 5)

Video.Games <- c("Super Mario Bros",

"Mike Tyson’s Punch Out",

"Contra", "Konami’s Top Gun")

qplot(Difficulty, Fun, geom = "point",

xlim=c(0,100),

ylim=c(0,100),

size = I(6), colour= I("dodgerblue4")

) +geom_text(label = Video.Games)

Figure 61:

Super Mario Bros

Mike Tyson's Punch Out

Contra

Konami's Top Gun
0

25

50

75

100

0 25 50 75 100
Difficulty

F
un

Here we can alter hjust(), vjust() and angle() inside the geom text() command to change both the
justification as well as the angle at which the text labels are printed. Of course, one solution would be to simply
make the x and y axes have larger ranges, but this is supposed to be a teaching example.By making a new variable
called “Konami,” I can make things line up nicely, as shown in figure 62.

Difficulty <- c(5, 10, 90, 100)

Fun <- c(30, 90, 50, 5)

Video.Games <- c("Super Mario Bros",

"Mike Tyson’s Punch Out",

"Contra", "Konami’s Top Gun")

Konami <- c(0,0,1,1) #New variable mapped to hjust

qplot(Difficulty, Fun, geom = "point", xlim=c(0,100),

ylim=c(0,100),

size = I(6), colour= I("dodgerblue4")

) +geom_text(label = Video.Games,

hjust=Konami, vjust=1)

Figure 62:

Super Mario Bros

Mike Tyson's Punch Out

Contra

Konami's Top Gun
0

25

50

75

100

0 25 50 75 100
Difficulty

F
un

Below is a cheat sheet showing various values for common combinations of all three options:

0 45 90

is-R is-R is-R

is-R is-R is-R

is-R is-R is-R

is-
R

is-
R

is-
R

is-
R

is-
R

is-
R

is-
R

is-
R

is-
R

is
-R

is
-R

is
-R

is
-R

is
-R

is
-R

is
-R

is
-R

is
-R

0.0

0.5

1.0

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

 hjust

vj
us

t

Various values of angle, hjust and vjust in ggplot

31

7 The Legend(s) of ggplot2

Figure 63: A Link to Your Past?

7.1 Troubleshooting Legends

As we discussed before, sometimes going through all the steps to make a nice graphic leaves you with extra legends
or legends that don’t quite look right. For example, take a look at the code below that produces figure 64.

ANES <- read.csv("http://pages.iu.edu/~cdesante/ANES.csv")

party.and.region <- ANES[,c(1, 12, 16)]

party.and.region.year <- melt(party.and.region,

id=c("year", "south"), na.rm=TRUE)

party.region.time <- dcast(party.and.region.year,

year+south~variable, mean, na.rm=T)

Legends.0 <- ggplot(data = party.region.time

) + geom_point(aes(x = year,

y = pid7,

size=(1),

colour=as.factor(south),

shape=factor(south))) +theme_bw()

32

Figure 64: Legends.0

●

●

●
●

●

●
●

● ●

● ● ●

● ● ●

●
●

●

● ●

●

●

●
●

●
●

●

1.6

2.0

2.4

2.8

1950 1960 1970 1980 1990 2000 2010
year

pi
d7

(1)

● 1

as.factor(south)

●

●

0

1

factor(south)

● 0

1

What we see is that the size variable is showing a legend with a value of “(1)” while the colors and shape
which correspond to the same variable (south) not only are uninformative, but are redundant. Let’s make some
changes:

Figure 65: Legends.1 ← Legends.0 + scale size area(6) + ylim(1,3.5)

●
●

●●●
●●●●

●●●
●●●

●
●

●
●●

●
●

●●
●●

●

1.0

1.5

2.0

2.5

3.0

3.5

1950 1960 1970 1980 1990 2000 2010
year

pi
d7

as.factor(south)

●

●

0

1

6

● 1

factor(south)

● 0

1

Legends.1 <- Legends.0 + scale_size_area(6) + ylim(1,3.5)

#Line above alters size and y-axis limits;

Legends.2 <- Legends.1 + scale_colour_manual(values=c("darkblue", "darkred"),

labels=c("Non-South", "South"))

#Line above alters the colors we will use as well as the labels those values to which they correspond.

Legends.3 <- Legends.2 + scale_shape_discrete(name ="Region",

labels=c("Non-South", "South"))

#Line above labels the shapes we will use.

Figure 66: Legends.2

●
●

●●●
●●●●

●●●
●●●

●
●

●
●●

●
●

●●
●●

●

1.0

1.5

2.0

2.5

3.0

3.5

1950 1960 1970 1980 1990 2000 2010
year

pi
d7

as.factor(south)

●

●

Non−South

South

6

● 1

factor(south)

● 0

1

33

Figure 67: Legends.3

●
●

●●●
●●●●

●●●
●●●

●
●

●
●●

●
●

●●
●●

●

1.0

1.5

2.0

2.5

3.0

3.5

1950 1960 1970 1980 1990 2000 2010
year

pi
d7

as.factor(south)

●

●

Non−South

South

6

● 1

Region

● Non−South

South

We still have a problem though in the resulting figure; ideally we’d have larger labels and we’d have red
triangles for the south and blue circles for the non-south in our legends. We can do this as follows:

Legends.4 <- Legends.3 + guides(colour = "legend",

size = "none",

shape = "legend") + guides(colour = guide_legend("Region"),

shape = guide_legend("Region"))

Figure 68: Legends.4

●
●

●●●
●●●●

●●●
●●●

●
●

●
●●

●
●

●●
●●

●

1.0

1.5

2.0

2.5

3.0

3.5

1950 1960 1970 1980 1990 2000 2010
year

pi
d7

Region

● Non−South

South

Our last problem is now the size of the colored shapes in the legend; we can fix this with the following code:

Legends.5 <- Legends.4 + guides(colour = guide_legend("Region",

override.aes = list(size = 6)))

Figure 69: Legends.5

●
●

●●●
●●●●

●●●
●●●

●
●

●
●●

●
●

●●
●●

●

1.0

1.5

2.0

2.5

3.0

3.5

1950 1960 1970 1980 1990 2000 2010
year

pi
d7

Region

● Non−South

South

Once we add some axis and plot labels, we’re good to go (the \n allows you to add a return).

Legends.6 <- Legends.5 + labs(list(title = "Regional Partisanship 1952-2008 \n",

x = "\n ANES Year", y = "Mean Partisanship \n"))

34

Figure 70: Legends.5

● ●
●●●

●●●●●●●
●●●

●●
●

●●
●

●●●
●●

●

1.0

1.5

2.0

2.5

3.0

3.5

1950 1960 1970 1980 1990 2000 2010

 ANES Year

M
ea

n
P

ar
tis

an
sh

ip

Region

● Non−South

South

Regional Partisanship 1952−2008

7.2 ggplot() vs. qplot()

Readers may have observed that I have switched between two different commands, ggplot() and qplot(), in
the above examples. Honestly, I’m still not completely sure of the differences between the commands. What I
know is that qplot() allows us to quickly plot something, and ggplot() allows us to specify more options up
front before printing the graphic. Sometimes, this is useful; it turns out we could have bypassed all of the legend
troubleshooting we did above had we simply factored the “south” variable and then specified the aesthetics we
wanted. Here, ggplot() knows that when it produces a legend it should map both colour and shape to a single
legend; since we do not want a legend for size, we can move that option to outside the aes() and (with the addition
of the custom colours) produce figure 71.

ANES <- read.csv("http://pages.iu.edu/~cdesante/ANES.csv")

party.and.region <- ANES[,c(1, 12, 16)]

party.and.region.year <- melt(party.and.region,

id=c("year", "south"), na.rm=TRUE)

party.region.time <- dcast(party.and.region.year,

year+south~variable, mean, na.rm=T)

PLOT <- ggplot(data = party.region.time

) + geom_point(aes(x = year,

y = pid7 ,

colour= south ,

shape= south) ,

size=I(6)

) + scale_colour_manual(values=c("darkblue", "darkred"))

print(PLOT)

Figure 71: Legends with ggplot()

1.6

2.0

2.4

2.8

1950 1960 1970 1980 1990 2000 2010
year

pi
d7

south

Non-South

South

35

8 Mapping Spatial Data

Sometimes we want to map data that are spatial in nature; county-level turnout, state-level poverty rates, etc.
Below are some examples that we can use to make maps.

8.1 Basic State-Level Map

Let’s assume you have data in a CSV file that may look like the one shown in figure 72. Notice the lower case state
names; they will make merging the data much easier. The variable of interest we’re going to plot is the relative
incarceration rates by race (whites and blacks) across each of the fifty states (we’ll remove DC once we load the
data). Using the map data("state") command, we can load a data.frame called “all states”, shown below in
figure 73. In this example, my data is called “Prison” and is a CSV file of incarceration rates and poverty rates
by race by state.

library(ggplot2)

library(maps)

Prison <- read.csv(

"http://mypage.iu.edu/~cdesante/prisons14.csv"

)

head(Prison)

all_states <- map_data("state")

all_states

head(all_states)

Prison$region <- Prison$stateName

Total <- merge(all_states, Prison, by="region")

head(Total)

Total <- Total[Total$region!="district of columbia",]

Figure 72:

Figure 73: Built in State Data

After merging all the data, we have a new object called “Total” which contains the geographic data as well as
our variables of interest from Prison:

Figure 74: Data after Merge

36

Now, the first time through this might seem quite daunting. However, as long as you’ve followed the steps I
gave earlier, and you have an object called “Total” which can be manipulated and plotted with the code below;
the figure is shown in figure 75. Again, to see your options for colors, run colors().

p <- ggplot()

p <- p + geom_polygon(data=Total, aes(x=long, y=lat, group = group, fill= bwRatio), colour="white")

p <- p + scale_fill_continuous(low = "thistle2", high = "darkred", guide="colorbar")

P1 <- p + theme_bw() + labs(fill = "Black to White Incarceration Rates \n Weighted by Relative Population"

,title = "State Incarceration Rates by Race, 2010", x="", y="")

P1 <- P1 + scale_y_continuous(breaks=c())

P1 <- P1 + scale_x_continuous(breaks=c()) + theme(panel.border = element_blank())

Figure 75: Our Map

37

8.2 Projections

When working with maps and spatial data, you’ll want to be careful how the curvature of the earth is projected
into two dimensions. In case you didn’t know, the world has been misrepresented for years. For more, you can
see the Cartographers for Social Equality, from the West Wing. The Mercator Projection, shown in figure 76
distorts the northern countries, making Greenland appear much larger than both Africa and South America. In
fact, South America is approximately nine times larger.

Figure 76: The Deceptive Mercator Projection

This is better shown in the Gall-Peters projection, in figure 77.

Figure 77: The Gall-Peters Projection

38

https://www.youtube.com/watch?v=OH1bZ0F3zVU

8.3 Pulling Maps from the Web with qmap()

But, that’s not even the coolest thing that we can do using maps in R; using the qmap() from the ggmap() package,
we can pull from already existing and easy to find maps.

library(ggmap)

BTown <- qmap(’Bloomington, IN 47405’, zoom = 16)

BTown #Where we are right now.

IU <- qmap(’Indiana University’, zoom = 15)

IU #Google’s good at this.

Figure 78: qmap(‘Bloomington, IN 47405’, zoom = 16)

Figure 79: qmap(‘Indiana University’, zoom = 15)

39

You can even use this to make custom maps, like the one below which shows just how spatial my education
has been.

Figure 80: Where I’ve Lived:

●

●

●
●

●

●

High School
College

Started Ph.D. Here Finished Ph.D. Here

First Teaching Job

IU

Then one time when I was showing students how to make maps, I had a student who was giving me a hard
time about where I (wasn’t) going on “Spring Break.” So, I made up some data (though I am not sure I told him
that) and used it in my lab; guess where he was heading off to visit.

CDC <- read.csv("http://mypage.iu.edu/~cdesante/cdc.csv", as.is = T)

#LON = Longitude; LAT = Latitude of where the person slept the night before.

#Disease = Reason for Seeking Medical Care

attach(CDC)

MAP <- qmap(’30.255096, -85.865909’, zoom= 11)

PCB <- MAP

custom.colors <- c("red", "orange" , "yellow", "green", "blue", "blueviolet", "violet")

PCB + geom_point(aes(x = LON , y = LAT , colour = DISEASE), size = 4.5 , alpha = 0.40

) + scale_colour_manual(values = custom.colors)

#Final Plot:

PCB <- PCB + geom_point(aes(x = LON , y = LAT , colour = DISEASE ,

title = "Enjoy your break!"), size = 4.5 , alpha = 0.40 ,

) + scale_colour_manual(values = custom.colors)

DISEASE

Alcohol Poisoning

Chlamydia

Gonorrhea

Herpes

MRSA

Syphilis

"Enjoy your break!"

40

8.4 Maps at the County Level using FIPS Codes

INDIANA COUNTY MAPS

install.packages("ggplot2", dependencies = TRUE)

install.packages("maps", dependencies = TRUE)

install.packages("mapdata")

install.packages("maptools")

install.packages("mapproj")

install.packages("ggmap", dependencies = TRUE)

install.packages("Hmisc", dependencies = TRUE)

library(maps)

library(mapdata)

library(maptools)

library(scales)

library(RColorBrewer)

library(ggplot2)

library(Hmisc)

theme_clean <- function(base_size = 12) {

require(grid)

theme_grey(base_size) %+replace%

theme(

axis.title = element_blank(),

axis.text = element_blank(),

panel.background = element_blank(),

panel.grid = element_blank(),

axis.ticks.length = unit(0,"cm"),

axis.ticks.margin = unit(0,"cm"),

panel.margin = unit(0,"lines"),

plot.margin = unit(c(0,0,0,0),"lines"),

complete = TRUE

)

}

DATA <- read.csv("http://pages.iu.edu/~cdesante/indiana.csv")

head(DATA)

dim(DATA)

DATA <- DATA[, c(2,12)]

head(DATA)

colnames(DATA) <- c("FIPS", "Earnings")

head(DATA)

data(county.fips)

mapcounties <- map_data("county")

head(mapcounties)

mapcounties$county <- with(mapcounties , paste(region, subregion, sep = ","))

head(mapcounties)

mergedata <- merge(mapcounties, county.fips, by.x = "county", by.y = "polyname")

41

head(mergedata)

Indiana <- mergedata[mergedata$region == "indiana" ,]

head(Indiana)

Final.Data <- merge(DATA, Indiana, by.x = "FIPS", by.y = "fips")

head(Final.Data)

##Colour Choices:

colors <- brewer.pal(5,"RdYlBu")

Final.Data$colorBuckets <- as.numeric(cut2(Final.Data$Earnings, g= 10))

table(Final.Data$colorBuckets)

pal <- brewer.pal(10,"RdYlGn")

pal <- pal[10:1]

###################################

head(Final.Data)

Final.Data <- Final.Data[order(Final.Data$order),]

Indiana <- Indiana[order(Indiana$order),]

map <- ggplot(Final.Data, aes(long, lat, group= county)

) + geom_polygon(aes(fill=factor(colorBuckets))) +

scale_fill_manual(values=pal)

map + geom_path(data = Indiana, colour = "white",

size = 1, alpha = .5) + labs(fill="Earnings Per\n County") + theme_clean(

) + guides(fill = guide_legend("Earnings Decile"))

Earnings Decile

1

2

3

4

5

6

7

8

9

10

42

	Why this guide?
	Introduction to ggplot2:
	The Basic Grammar of Graphics:
	A Very Basic Plot:

	The Most Commonly Used Geoms:
	geom_point()
	geom_line()
	geom_jitter()
	geom_bar()
	geom_abline()
	geom_pointrange()
	geom_boxplot()
	geom_density()
	geom_errorbar()
	geom_text()
	geom_tile()

	Other Useful Functions
	Casting and Melting with reshape2
	Example 1: Means of Variables over Time
	Example 2: Casting/Melting with two variables:
	Example 3: Adding facets()

	ggsave()
	grid.arrange()

	Color in ggplot2:
	Custom Colors in ggplot2:
	scale_color_manual:
	scale_colour_gradientn
	scale_colour_brewer

	Manipulating Text in ggplot2:
	Using Mathematical Expressions in Labels
	plotmath in ggplot2
	Custom Axis Breaks using + scale_y_continuous()
	Textual Healing
	Working with hjust(), vjust() and angle()

	The Legend(s) of ggplot2
	Troubleshooting Legends
	ggplot() vs. qplot()

	Mapping Spatial Data
	Basic State-Level Map
	Projections
	Pulling Maps from the Web with qmap()
	Maps at the County Level using FIPS Codes

